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Abstract. Stable and unstable manifolds of dynamical systems the-
ory are used to study the motion and deformation of fluid elements
for flow past a circular cylinder in the regime of time-periodic vortex
shedding; Reynolds numbers of 100 and 180 are considered. The
existence of manifolds is guaranteed only for hyperbolic periodic
points but in the present case the entire body surface consists of
non-hyperbolic periodic points. Therefore conditions are derived for
the existence of a manifold at the body surface. These conditions
imply that while a separation point in instantaneous streamline por-
traits may wander in time, particle trajectories separate from the
wall at single points. A hyperbolic periodic point is found in the
walke; the intersection of its manifolds with the manifolds of surface
points provides information about fluid engulfment into- and shed-
ding from the wake cavity. For Re = 180 the fraction of the fluid in
the cavity shed every period is larger leading to a smaller residence
time. Calculation of the manifolds with adaptive resolution allows
one to delineate the topology of the intersection pattern and how it
changes with Reynolds number.

Computed manifolds agree well with streaklines for a range of in-
jection locations near the body and give a good indication of regions
which have maximum extension or compression. For example, line
elements that stretch the most are initially close and normal to the
stable manifold and end-up near and parallel to the unstable mani-
fold.

1. Introduction. This work has two chief objectives: (i) To employ
tools from dynamical systems theory, namely, the stable and unstable man-
ifolds, to study the processes of fluid engulfment and shedding in the un-
steady wake of a circular cylinder. (ii) To test the usefulness of the unstable
manifold as a numerical flow visualization aid for unsteady two-dimensional
bluff body flows. The word “manifold” should evoke in the mind of the
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reader only the simple ideas of curve or surface and none of the forbidding
notions of abstract spaces. For steady flow, the stable or unstable manifolds
are simply what a fluid mechanician refers to as a separating streamline,
dividing streamline or separatrix. The background for the generalization
of these concepts to time-periodic flow will be disclosed in §2.

With respect to the first objective, very little is known about trans-
port in the near wakes of bluff bodies. Those who have been interested
in the operation of flame-holders and electrostatic precipitators (see, for
example, Winterfeld [28] and Vincent [27]) often speak of an ill-defined
region which traps fluid behind the body, loosely identifying it with the
recirculation bubble of the time-averaged flow. Perry, Chong and Lim [16]
described the entrainment process in terms of ‘alleyway’ regions in instan-
taneous streamline portraits. By simultaneous observation of streaklines
and instantaneous streamlines at different phases during the shedding cycle,
they were able to make the following, in our view remarkable, deduction:
“ ‘hodies’ of fluid form a queue and are successively stacked up one be-
hind the other and then move in jumps towards the solid body, awaiting
their turn to be ‘squeezed’ out of the cavity and carried away by a Kelvin-
Helmholtz-like roll-up.” It seemed to us that with the help of dynamical
systems theory, one could sharpen the description of this process by defin-
ing more precisely what is meant by “wake cavity”, “bodies of fluid” and
by quantifying rates of transport.

With respect to the second objective, calculations undertaken for the
periodic leapfrogging of two vortex rings (Shariff et al.[20], [21]) illustrated
the striking property of the unstable manifold to reveal even very fine scale
features of flow visualization using a patch of smoke. We inquire as to
whether the same property may apply to the streak method of visualization
for bluff body flows. That it may is suggested by a thought provoking
sketch in Perry, Chong and Lim [16] (their Figure 8) of the threading
of a streakline. To someone a little familar with dynamical systems, its
pattern of multiple folding and layering looks very much like a portrait of
a manifold.

The paper is organized as follows. The next section (§2) provides the
necessary dynamical systems background, with the goal of defining the sta-
ble and unstable manifolds. The section concludes with some new results
concerning the issuance of manifolds from solid walls. Section 3 discusses
the numerical procedures used for obtaining the velocity field, for track-
ing particles and computing manifolds. The presentation of results in §4
in divided into sub-sections. It begins in the first sub-section with a con-
ventional Eulerian view of the flow by presenting instantaneous streamline
portraits in order to orient the reader to the type of unsteadiness present.
The second sub-section presents manifolds for Reynolds numbers of 100
and 180 and compares fluid transport characteristics and the topology of
the manifolds for the two cases. The next sub-section discusses the rela-
tionship between manifolds, streaklines and the underlying vorticity field.
The fourth sub-section is devoted to a study of the deformation of infinites-
imal line elements and serves to rationalize the relationships observed be-
tween streaklines and the unstable manifold. We are also motivated in

this work b
grangian ar
of Kurosak:
temperatur
may have al
with recom:

2. Dyne
define the si
of the text b
and slope of

The equa
two dimensi

(1)

The solution
albeit at dif
this, introdu

(2)

If the velocit
¢ be modulo

We shall w
column vectc
and f;, respe

The numb
a map. For
(Poincaré) m
to ¢, as the
we may cons
like the pairi
map. In eithe
for the desire

(3)

where x and |
level. For th
which displas
map and 1ts :

For both tl
local propert



KINEMATICS IN A TIME-PERIODIC WAKE 615

this work by the possibility of explaining interesting physical effects by La-
grangian arguments. To this end, the last sub-section verifies the suggestion
of Kurosaka et al.[12], that the phenomenon of reversal of time-averaged
temperature gradient downstream of a circular cylinder (Minchin [15]),
may have an explanation in terms of particle trajectories. The paper closes
with recommendations for further work.

2. Dynamical systems terminology. The goal of this section is to
define the stable and unstable manifolds, drawing upon the first few pages
of the text by Guckenheimer and Holmes [8], and then to discuss the points
and slope of manifold emanation from a solid no-slip surface.

The equations of motion of a material point (henceforth “particle”) in
two dimensional unsteady flow are

z= ‘U.(I, Y, t):

) y=v(z,y,1).

The solution curves of (1) in the zy plane may cross for different particles,
albeit at different ¢. This fact impairs geometric thinking. To overcome
this, introduce time as an extra dimension:

z = u(z,y,9),
(2) y=1v(z,9,9),
é=1.

If the velocity is time-periodic, with period 2x say, then it is enough that
¢ be modulo 27 to ensure non-crossing trajectories in zy¢ space.

We shall write systems such as (2) simply as x = f(x) where x and f are
column vectors with n elements; we shall denote their ith elements as z;
and f;, respectively.

The number of dimensions of the problem is reduced to two by defining
a map. For example for a time-periodic velocity we may consider the
(Poincaré) map of particles in one period ¢, — ¢, + 27w. We shall refer
to ¢, as the base phase of the Poincaré map. For a non-periodic velocity
we may consider how particles are mapped during some interesting event
like the pairing of two vortices in a mixing layer; we shall call this an event
map. In either case integrating the dynamical system, usually numerically,
for the desired time interval and then iterating the map we get

(3) xF L= g(ad),

where x and g have n—1 elements and the superscript denotes the iteration
level. For the event map, iteration gives a chain of particles, each one of
which displaces its iterate during the event. The usefulness of the event
map and its manifolds remains untested.

For both the continuous system and map one may begin by studying the
local properties of the system. This is possible in the vicinity of its fixed
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points, X, defined so that

f(X) = 0 (continuous system),

(4) =
g(X) =X (map).

A fixed point of the Poincaré map corresponds to a particle with a periodic

trajectory. Note that the continuous system (2) has no fixed points but it

may have a periodic trajectory. The local behavior near the fixed point is

investigated by studying the linearized systems

& = A¢ (continuous system),
) £+ = B¢ (map),

E=x-X,

where A and B are the Jacobian matrices of f(x) and g(x), respectively.
A fixed point of a continuous system is called hyperbolic if A contains no
eigenvalues with zero real part; a fixed point of a map is hyperbolic if B
contains no eigenvalues with unit modulus. For a continuous system, the
spaces spanned by those generalized eigenvectors of the Jacobian matrix
that are associated with the positive and negative eigenvalues, respectively,
are called the unstable and stable eigenspaces. For a map, the unstable and
stable eigenspaces are the spaces spanned by the generalized eigenvectors
of B whose eigenvalues have modulus > 1 and < 1, respectively.

It is important to realize that the solution curves of the linearized system
may not be geometrically related to those of the fully nonlinear system in
the vicinity of the fixed point, except for a hyperbolic fixed point. The
Hartman-Grobman theorem assures one that for a hyperbolic fixed point
the two can be deformed to each other in a continuous, invertible and one-
to-one fashion. For solid surfaces on which the no-slip and impermeability
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FIGURE 1. Sketch of streamline pattern for steady separated flow over a
flat wall.

conditions are specified, the entire surface consists of non-hyperbolic fixed
points, and there may be no connection between the linearized and local
flow. For example, consider steady separated compressible flow over a
no-slip wall; Figure 1 sketches some streamlines. The equation of mass
conservation, (pu) + (pv)y = 0, where p is the fluid density, allows one
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FIGURE 2. Streamline pattern for steady compressible flow linearized
about a no-slip wall.

to define a streamfunction, i, such that

pu= P,

(6) = 4.,

whose level curves are tangent to the velocity. Here and subsequently,
commas in subscripts denote partial differentiation, e.g., ¥, = d¢/8y. By
expanding v in a Taylor series about a point on the wall (denoted by w) up
to bicubic terms it is seen that the separating streamline emanates from w
only if (¢)w = 0, where ¢ = 9 ,. The slope of the separating streamline
at the wall is —=3(0,z/0,y)w. The flow linearized about w is

(5)-06 5)()
&/ \0 DJ\& )’
(7) S= (i), ‘the shesr'at the wall,
D = (vy)w, the dilatation at the wall.

Note that the Jacobian matrix has a zero eigenvalue. The solution curves
of (7) are illustrated in Figure 2; they are unrelated to those of the full
nonlinear system, thus illustrating the Hartman-Grobman theorem. So
far, the density in (6) has been some arbitrary function. To determine
the density for the linearized flow, consider in Figure 2 the principle of
conservation of mass for an area bounded on the bottom by the wall and
on the sides by streamlines. We see that Figure 2 does not satisfy it unless
the density is zero or the dilatation D at the wall is zero to make the
streamlines of the linearized flow parallel to the wall. If the density is
non-zero then the equation of mass conservation implies that D = 0 at the
wall and we must admit the latter case. In this case, the streamlines of
the linearized and actual flow become geometrically related except at the
separation point Q.

We shall sometimes use the term invariant set. It refers to a set which
maps into itself under the action of the dynamical system, i.e., a particle
started on the set remains on the set forever. For steady flow, each stream-
line is an invariant set. Consider a Poincaré map for time-periodic flow.
Any set of points Sp iterated forward and backward an infinite number of
times and superimposed, provides an invariant set for the map. If Sy is
chosen to be a curve whose endpoints are the forward or backward maps
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of each other then the invariant set is a connected set. A streakline in a
time-periodic flow is the forward half of an invariant set of this kind. For
this case, Sy is the streakline formed after the injection device has been on
for one period. In the next period, Sp is mapped to the curve S; and Sg
is recovered by the newly injected particles and so on. Hence in order to
numerically calculate a streakline for a time-periodic flow at a given phase
without continually injecting particles, one would simply generate Sp by
injecting particles for one period and then iterate it to obtain S5y, Sa,.. .,
superimposing them on the page.

Finally, we are in a position to define the stable and unstable manifolds
of a fixed point of a map or continuous system—they are merely connected
invariant sets passing through the fixed point. Alternatively, we begin by
defining them locally in some neighborhood B of the fixed point. The
local stable (unstable) manifold is the set of all points in B which tend to
the fixed point as ¢ — +oo(—0o0). For a map, the iteration index ¢ plays
the role of . The global stable (unstable) manifolds are simply defined
by letting the local manifolds flow backward (forward) under the action of
the continuous system or map. For example, the separating streamline in
Figure 1 is the only unstable manifold in the flow. Note that while every
wall point is a fixed point, only one of them, namely, @ has a manifold
emanating from it. This is a feature of non-hyperbolic fixed points. On
the other hand, stable and unstable manifolds are guaranteed to exist for
every hyperbolic fixed point and to be tangent to the stable and unstable
eigenspaces of the fixed point. For closed steady separation bubbles, the
separating streamline may connect to a another fixed point, say P. In
this case, the separating streamline is also the stable manifold of P. This
coincidence is not robust and in general, for a time periodic perturbation,
two such manifolds of the Poincaré map are split.

Consider time-period two-dimensional fluid flow. As the base phase ¢,
of the Poincaré map varies, the changing manifold (an unstable one, say) of
a fixed point of the map can be thought of as the changing cross-section of
a surface in zy¢ space. This surface is the unstable manifold of a periodic
trajectory in zy¢ space. The reader now knows that not only fixed points
of the continuous system but also periodic trajectories may have manifolds.
All the particle trajectories lying on this surface tend to the periodic one
as t — —oo. It should therefore be clear that as ¢, varies, the changing
manifold of the Poincaré map evolves as a material curve. Like a streakline
or other invariant set, it is one of the select material curves whose shape
evolves in a periodic manner.

Manifold emanation point and angle for time-periodic flow over a curved
wall. The existence of a manifold at a non-hyperbolic periodic point is
not guaranteed. This sub-section generalizes to the time-periodic case, the
result for steady flow that a manifold emanates from the point of zero shear
stress. The slope of the manifold is also given.

Consider a curved wall and a curvilinear coordinate system (£, 7) in which
the wall coincides with the curve n = 0. We shall require that the coordi-
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nates attain unit metrics at the wall; this can always be arranged. Consider
next a Poincaré map from ¢ = 0 to ¢ = T, the period of the flow. Let &,, 7,
denote particle position at ¢ = 0 and let A§(T) and An(T) represent par-
ticle displacements in one period. For convenience, the originé =n=101s
placed at the candidate point on the wall from which a manifold emanates.
A manifold for the Poincaré map emanates from the origin with non-zero
slope if and only if in the limit as &,, 7, — 0 there exists a slope a # 0 such
that if n,/€, = a then An(T)/A&(T) = a. We do not consider manifolds
which may be tangent to the wall.

We first calculate the displacements A&(T"), An(T) for particles near the
origin. A Taylor expansion reveals that

d 1

G = = a7+ 5 ean () + e (O] 77
(8) +ugeq(t)én + 0 (),

d 1
(9) ?1: = :—: = E“n.nn(i)‘?z +0(€%).

In the above equations all partial derivatives are evaluated at the origin,
u¢ and u, are the velocity components along the tangents of £-lines and
n-lines respectively, h¢ and h, are the metrics along these lines, and A is

[E]] (JIE)] =0,0=
€ i 0 -

The Taylor expansions (8) and (9) make use of the fact that metrics are
unity at the wall and that regardless of the nature of the coordinate system,
the condition of incompressibility when evaluated at the wall implies that
Uy qn = 0.

With the initial condition n(0) = n, = O (¢), Equation (9) is integrated
to yield to consistent order

(10) by

(11) An(t) = 1(t) = 70 = 57ETnan(t) + O ().

Here and subsequently, hats will denote a time integral, e.g.,

(12) Up,gn (1) E./o Un,nn () d¢.

Substituting Equation (11) into Equation (8) gives for the motion of the
particle in the £ direction:

(13) S = L +ERO +0 (),
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where

fi(t) = ug n(t)no (1 + %Wcan.nn(t)) o % (tg,nn(t) + Aug 5 (2)) 75,

f2(t) = uge(t)no.

Since to leading order,

(14)

(15) AE(T) = Tg,n(T)no + O (€°),

the displacement vector (A¢(T), An(T)) becomes increasingly parallel to
the wall as the wall is approached unless

(16) Be.o(T) = 0.

This is a necessary condition for the manifold to emanate from the origin
with a finite slope (a # 0). One can derive the wall shearing stress, T (the
traction vector projected on to the wall tangent), and observe that it is
equal to a non-zero geometric factor times u¢ . Therefore the condition
(16) is equivalent to the vanishing of the integral of 7 over one period.

To obtain the value of the slope a = limg, ,,—0 An(T)/AE(T) we need
the next term in the solution of (13). The homogeneous part has the

solution Cefh(t)‘“ while the form F(t)ef'{’(‘)‘“ may be assumed for a
particular solution yielding

ALT)=&(T) - &

s 1 5.
%) = EoMotig ne(T) + 5‘?3“&.’1'1
2 [T 1 ~
+ '?ojo ug q(9) (5“!}.“(@5) = “E,nf(‘?s)) do.
Using (11) and (17) and putting a = 1,/€, we obtain

%an,nn(T) - ai,nf(T) _
%af.nn(T) + fuT “f.n(¢) (%an.nn(¢) - ﬁf,nf(ﬁf’)) d¢

(18) o=

That the numerator of (18) be non-zero provides, together with (16), neces-
sary and sufficient conditions for manifold emanation from the origin with
finite slope. The fact that the required conditions involve integrals of pe-
riodic functions over a period means that the manifold emanation point
is independent of the base phase of the Poincaré map. This was expected
beforehand because the manifold evolves as a material curve with changing
base phase and the velocity at the wall tends smoothly to zero (Dwight
Barkley, Private communication). The condition that the numerator in
(18) be non-zero means that the term in parenthesis in the integrand is
non-periodic and therefore that « is always dependent on the base phase
of the Poincaré map. This dependence is periodic as it should be.

If we ask the question: which particle trajectories trace their way back
to the surface of the body, the answer for steady flow would be: those
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trajectories lying on the dividing streamline. The point of separation is de-
fined to be where those trajectories emanate from. For time-periodic flow,
the unstable manifolds of the Poincaré map for different base phases are
cross-sections of an unstable manifold of the continuous dynamical system.
Only the trajectories lying on this surface can trace their way back to the
body. They do so to a single point, namely, where % ,(T) = 0. Thus while
points where instantaneous streamlines leave the body may wander in time,
there is only one separation point for particle trajectories. Marker is often
introduced near the surface of a body either by pre-painting the surface
with a thick coat of dye (Gerrard [7]) or by the electrolytic precipitation
method (Taneda [23]). The point about which tracer is observed to erupt
from the wall should therefore be fixed and should reveal the point of zero

time-averaged shear stress.

If the coordinate system becomes orthogonal at the wall (which can al-
ways be arranged), then « directly provides the slope of the manifold with
respect to the wall. For the case of a flat wall, the equation of incompress-
ibility implies that u; y, = —uy,yy so that (18) becomes

=3u; 4. (T)
ﬁz,yg -3 ng uz,yaz,yz(é) dﬁb

For steady flow over a flat wall, the value of T is immaterial, u, y is zero
at the manifold emanation point and Equation (19) reduces to

(19) a=

(20) a= —3H,

Ur,yy

a result obtained in Lighthill ([13], p. 65) for the slope of the dividing

streamline.

3. Numerical procedures. In this section we shall first briefly de-
scribe an existing code used to obtain the velocity field and then the code
developed to study the motion of particles.

Units are chosen so that the radius of the cylinder and free-stream veloc-
ity are unity. The Reynolds number, Re, is based on free-stream velocity
and cylinder diameter, D.

Procedure for calculating the velocily field. The velocity field is obtained
using the code ARC2D of Pulliam and Steger [17]. It was validated for the
present study by comparing the Strouhal number at four different values
of the Reynolds number against the experimental data of Williamson [25].
The agreement is very good; see Figure 3. The code solves the compressible
Navier-Stokes equations in general curvilinear coordinates using centered
fourth-order space differences. The Mach number is set to 0.1 here. Time
advancement is performed with the implicit Euler scheme and approximate
factorization. Characteristic boundary conditions, designed to minimize
the reflection of sound waves, are imposed at the outer boundary. A polar
mesh with 169 x 65 points in the azimuthal and radial directions is used.
The first grid circle adjacent to the surface is at » = 1.04 and the last at
r = 24. The adequacy of the resolution was judged by using 249 x 131 points
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FIGURE 3. Strouhal number vs. Reynolds number compared with ex-
periments and other computations. Small symbols: experimental data of
Williamson [25]; filled triangles: present results; other symbols, solid and
dashed curves: other computations. Courtesy of Prof. C.H.K. Williamson.
For a detailed caption see Figure 7 of Williamson [25] in these proceedings.

with increased clustering near the cylinder surface (the first grid circle was
at r = 1.002). The velocity signal at z = y = 2 was compared at a 151 time
points in one period. The amplitude increased from .0817 to .0824 and the
mean decreased from 1.234 to 1.232. The calculation of Karniadakis and
Triantafyllou (Figure 9 in [11]) has a comparable amplitude of .0820 but a
larger mean of 1.288.

A small amount of artificial dissipation is added to eliminate pressure os-
cillations at a wavelength equal to twice the mesh spacing. The calculation
was started with an asymmetric initial condition and allowed to converge
to a limit cycle, whereupon the period T' was determined by minimizing
the rms error of the x-velocity between times ¢ and ¢ + T, added to the
same quantity for the y-velocity. This measure of the aperiodicity was
.0008 at Re = 80 and .003 at Re = 180. Next, 600 time steps per period
were executed and every fourth velocity frame was stored for the particle
tracking. In order to permit future comparison with experiment or other
calculations, it is important to state that the phase reference was chosen
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to be the x-velocity signal at £ = y = 2. All the Poincaré maps considered
in this paper have a base phase such that this signal attains a minimum at
At = 23T after the base phase.

Procedure for tracking particles. A tool has been developed to study
particle motions in unsteady two-dimensional velocity fields computed in
curvilinear coordinates. Its main features are described below:

(i) Bicubic splines are used to interpolate the velocity field from grid
points to a particle. This choice was made on the basis of an extensive study
of the merits of various interpolation schemes by Yeung and Pope [30] in the
context of homogeneous turbulence. While there is little energy content at
small scales in the present work and bilinear interpolation would probably
have been adequate, splines allow for more future flexibility. The spline
routine is vectorized along one coordinate direction and has the choice of
periodic or non-periodic end conditions.

(ii) Particles are tracked in grid coordinates £ and 5 which increment
by unity from one grid point to the next along the appropriate coordinate
line. The obvious advantage is that the integer part of the coordinates for
each particle provides the indices for the spline coefficient look-up. The
equations of motion for a particle are

¢ (a8 (&€

E—ﬂ(é‘;) +L’(6—y)n
2(5)(5)

dt ar dy

where tildes denote the operation of spline interpolation of data stored on
a grid. Entries of the coordinate Jacobian such as 9§/0z are evaluated
at the grid points at program start-up from the inverse Jacobian (which
has entries like Ox/0€). The latter is evaluated by spline differentiation of
grid-point coordinates.

(iii) Time stepping is performed with a fourth-order Runge-Kutta scheme.
Since it evaluates the right hand side of Equation (21) also at the half-step
(t + 1/2At), with a 151 frames stored, we have 75 steps per period.

(iv) Particles may be tracked backward in time in order to (a) Obtain the
stable manifolds (b) Determine the origin of interesting fluid regions and
(c) Assess accuracy of time integration from the extent to which particles
run forward and then backward recover the initial condition.

(v) Material curves which have lost resolution due to stretching may be
refined. This is accomplished by returning to the instant at which a group
of particles was injected, interpolating new particles, and tracking them to
the present instant. This was considered preferable to interpolating new
particles continually during the time integration. In the latter scheme,
interpolation errors normal to the stretching direction would translate to
greatly amplified errors in the initial configuration.

(vi) Contours of Eulerian quantities may be simultaneously presented
along with particle configurations. This permits one to inject a group of
particles into an interesting region of the flow or to study the relationship
between the Eulerian and Lagrangian structure of the flow.

(21)
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(vii) In addition to the positional degrees of freedom, deformation degrees
of freedom may be evolved. An infinitesimal material line element with
components l; is tilted and stretched by the velocity field according to

Dl’,‘ _ au,-
(22) 5 = -é—::f,.

We do not wish to track line elements with specific initial orientations;
rather we wish to allow arbitrary initial orientation. For this we consider
the so-called deformation gradient matrix F' such that

(23) li(t) = £ ()};(0).
The four elements of F' are evolved according to

Dlmim _ aui
Dt 6.~:j

(24) Py Fiml0) = i

We conclude this section by describing the calculation of manifolds. Of
the several particle configurations which may be injected into the flow, is a
straight line segment whose second endpoint is the map of the first during
a specific duration of the flow. By iterating the map with the segment as
initial condition, and superimposing the iterates on the plot, one generates
an invariant set. If the first endpoint of the segment is on an unstable
(stable) eigenspace very close to a hyperbolic fixed point of the map, the
procedure generates a very close approximation to the unstable (stable)
manifold for time running forward (backward).

It was found that a hyperbolic fixed point of the Poincaré map exists
in the wake. It corresponds to a particle which has a periodic pathline.
The fixed point is located by starting with a rectangle R, applying the
Poincaré map T forward in time to obtain T(R) and then backward in
time to obtain T7!(R). If the map has a fixed point, it must lie in the
intersection of T(R) and T~YR), typically a much smaller region than
the original rectangle. The intersection is covered with another rectangle
and the process is repeated. Eventually the mapping becomes linear and
is a contraction normal to the unstable eigenspace and the inverse map
is a contraction normal to the stable eigenspace. Applying to each of the
two directions, the fact that every contraction mapping has a fixed point,
guarantees the existence of a fixed point in the intersection. In all the
cases we have considered, the amount of stretching is so large that the
eigenspaces are obtained to a good approximation visually from the long
sides of the stretched rectangle. If this is not the case the eigenvectors of
the deformation gradient matrix for the periodic particle can be used.

The conditions for manifold emanation from a wall discussed in §2 were
obtained after the calculations had been performed and were suggested by
them. In order to numerically determine manifold emanation points we
located, as a first step, the regions from which a band of particles near the
surface erupted into the outer flow. Next, in the vicinity of these regions,
a lattice of particles was iterated forward a few periods, successive iterates
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Fi1GURE 4. [Illustration of the procedure used to locate the stable manifold
emanation point at the rear surface of the cylinder.

being joined by straight line segments. To the extent that straight line
segments are mapped to straight line segments near a wall, this procedure
provides invariant sets from which the manifold emanation points can be
visually determined. Figure 4 shows such invariant sets near the stable
manifold emanation point. The manifold emanation point is within a grid
cell of # = 0, a location where the time-integrated shear stress must vanish
due to symmetry.

The Navier-Stokes solver (ARC2D) as well as two versions of the particle
tracking program are available from the authors. The first version of the
particle tracking program runs standalone on an IBM workstation (RS
6000) while the second version runs on a CRAY which issues graphics calls
to an IRIS 4D-25 workstation.

4. Results.

Instantaneous streamlines. Figure 5 shows instantaneous streamline pat-
terns for Re = 180 during roughly half a period of vortex shedding. Such
patterns have been discussed in Perry et al.[16] and so do not merit de-
tailed discussion here. Only some differences with a sketch by Perry et
al.(Figure 2 in [16]) are worth drawing attention to. The sketch depicts
more than one detached closed bubble of recirculation for each shed vor-
tex. In the present case there is at most one bubble and it is evanescent
as it travels downstream—for example, it is on the verge of disappearing
in Figure 5b; this difference has also been noted by Eaton [6]. It was first
thought that the disappearance may be promoted by numerical dissipation,
especially since the grid becomes coarse downstream, however, the pattern
remained unchanged when resolution was doubled. In Figure 5b a small
short-lived secondary bubble is seen. It is not present at Re = 100; here
it causes the size of the main bubble to rapidly increase. Sketches (d) and
(e) in Perry et al.[16] show a discontinuous transition between having an
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(e)

FIGURE 5. Streamfunction contours for half a period of vortex shedding
at Re = 180. Fraction of a period: (a) 0; (b) 47/151; (c) 51/151; (d) 65/151;
(e) 69/151. Range of contour levels and number of levels: (a) [-1.0, 1.0],
51; (b) [-1.0, 1.0], 101; (¢) [-1.0, 1.0], 51; (d) [-.04, .04], 51; (¢) [-.10, .10],
51.

attached bubble on the top surface with an open separation on the bot-
tom surface, and having a detached bubble on the top surface with a small
bubble attached on the bottom surface. Figure 5 shows how the transition
occurs smoothly. Streamlines just outside the closed bubble in (¢) increase
in curvature, form a cusp which then grows into a detached bubble as seen
in (d). The bubble has become attached to the lower surface at (e) and
simultaneously the larger bubble is detached from the upper surface.

Figure 6 displays the degree to which points of zero shear stress on the
surface wander for Re = 180. These are points where instantaneous stream-
lines leave the body; the open squares represent the short-lived secondary
bubble. For the case of Re = 100 we will only mention that the amplitude
of the motion of these points is smaller; for example, the top and bottom
separation points move by 6° rather than 12°,

Manifolds and fluid transport. This subsection presents manifolds for
Re = 100 and Re = 180, using some of the methods in Rom-Kedar et
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Degrees

Time

FIGURE 6. Angular position of points of zero shearing stress on the wall
(Re = 180), measured clockwise from the leeward centerline. The open
squares represent the momentary appearance of a secondary separation
bubble.
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FIGURE 7. Fraction of particles remaining in the computational domain
as a function of time step. , Re = 100, 10* particles initially; —-— ,
Re = 100, 10° particles initially; —-—, Re = 100, from the model equation
(25); - , Re = 180, 10* particles initially; -~-~ , Re = 180, from the
model equation (25).

al.[19], discusses how they provide information about how the near wake
engulfs fluid and sheds fluid into the wake, and discusses the topology of
the intersection pattern of stable and unstable manifolds.

The residence time, tg, of fluid particles behind a bluff body is a de-
sign parameter for flameholders and electrostatic precipitators [28], [27].
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It is operationally defined by filling the near wake with smoke and then
interrupting the supply of smoke. Thereafter, the decay of concentration
in a small measurement volume is obtained by absorption techniques. Fol-
lowing some delay time, the decay of concentration is exponential with
some superimposed fluctuations; however, Winterfeld [28] has noted de-
viations from expomnential decay. A non-dimensional characteristic decay
time H = Utgr/D is defined.

For the computations, 10* particles were initialized behind the cylinder
and allowed to escape; Figure 7 is a log-linear plot of the fraction of particles
remaining in the computational domain. Since particles which leave the
near wake are washed downstream, the number of particles in the near
wake is obtained by translating the curves to the left. The behavior is
not exponential nor was a power law observed on log-log axes. To ensure
that this was not due to sampling error, the initial number of particles was
increased to 10° for Re = 100 (chain-dashed line); no change is observed.
The rate of decay for Re = 180 (dotted line) is initially larger than for
Re = 100, but subsequently it is smaller. A value for H was obtained
by determining the time interval required for the number of particles to
diminish by a factor of e~!, starting after 33 periods to avoid the initial
transients. For Re = 100 and 180, respectively, H = 11.2 and 5.6. On the
other hand, for flat plates normal to the stream, MacLennan and Vincent
[14] found experimentally that H is a strongly decreasing function of Re
up to about Re = 5000 and then asymptotes to a constant value of about
H = 5. At the lowest Reynolds number they considered (Re = 1000),
H = 25. These values happen to be comparable to the simulations at
much lower Reynolds numbers, presumably because cylinders have smaller
regions of trapping behind them than flat plates.

Manifolds allow one to define precisely what experimentalists have called -

the “trapping region behind the body” and they contain information about
the decay curves discussed in the previous paragraphs. Figure 8a shows
for Re = 100 a close-up near the body of the unstable manifold (of the
Poincaré map) of the upper emanation point U/ and the upper half of the
stable manifold of the point W in the wake having a periodic trajectory.
Figure 8b is the corresponding plot for the lower side of the wake and is
included only to illustrate the fact that the manifolds of the upper and
lower halves of the wake hardly intermingle; the hook labelled & is the first
hint of cross-talk between the two halves.

The manifolds are shown in a distorted but topologically correct sketch
in Figure 9. Only the unstable manifold of U is illustrated up to the detail
computed; the other manifolds are abbreviated since they have the same
winding pattern. Since a particle started on one of the manifolds must end
up somewhere else on it after one period, intersection points must map to
intersection points. In particular in the present case, point O maps to B
and A to C. Therefore the fluid in the shaded lobe labelled D; maps to
D5, etc. The ends of these lobes lie inside the cores of the upper street
of vortices. For points p such as O, A, B and C, the unstable manifold
from U to p and the stable manifold from W to p intersect only at p. Such
points are called primary intersection points [18]; the term ‘lobe’, which we
employed earlier without definition, refers to regions bounded by segments
of the unstable and stable manifolds between two such adjacent points.

(a)

(b)
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F1GURE 8. Close-up near the cylinder of four manifolds for Re = 100. The
solid triangle indicates the periodic point W which returns to its original
position after one period. (a) Two manifolds of the upper wake: unstable
manifold of U/ and upper stable manifold of W. The shaded region of fluid
escapes the upper half of the wake cavity after one period. (b) Two mani-
folds of the lower wake: unstable manifold of L and lower stable manifold
of W.

The fluid D, was mapped from D,. The lobe D, is also shown shaded
in the computed manifolds, Figure 8, The mass of each lobe must be
the same and it will be denoted by mp Let us define the wake cavity as
the region UOWO'LU which is alternately bounded by segments of the
unstable and stable manifolds. Lobe D, is the only fluid region (together
with its counterpart on the lower side) which escapes the wake cavity after
one period. It will be called the detrained lobe. All other fluid remains in
the cavity. The fresh fluid that takes its place comes from the dot-filled
region £_; and it gets mapped to lobe E,. This lobe will be called the
entrained lobe, and its iterates will be denoted E4, Fs.... We shall adopt
the convention that the last in the sequence D-lobes and the first in the
sequence of E-lobes contained completely in any defined cavity are to be
numbered zero. The intersection of E, with D, is that subset of fresh fluid
which will spend only one period in the cavity before escaping. This subset
will escape the cavity and end-up inside D; as Ey N D;.

In winding about each other, the unstable manifold of U and the upper
stable manifold of W follow a simple rule: every E; lobe must have exactly
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‘Threading diagram’ of the four manifolds plotted in Figure 8 for Re = 100. The regions labelled D;
are successive iterates of the fluid, D,, detrained from the upper half of the wake cavity. The regions labelled E; are

iterates of the fluid E, entrained into the cavity.
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one tip and the tip must lie in D;. By tip, Rom-Kedar [18] means an inter-
section of an E and a D lobe which has only two intersection points (rather
than the usual four) of the stable and unstable manifolds. In following this
rule, notice in Figure 9, how after having formed lobe D3 at point E, the
manifold winds in to form a tip in the previous lobe, Dy, and then winds
out to form the next lobe, D4. The process then repeats. In order to make
one step in the process, the unstable manifold has to travel several times
back and forth between the cylinder and vortices. On the other hand, the
sketch in Perry et al. shows a streakline travelling once from the cylinder to
each vortex and back. The sketch in Perry et al is based on observations
at Re = 80, hence it was verified that the computed pattern at Re = 80
is unchanged. The two-color photograph in Perry et al.(Figure 7 in [16])
does show that the streak “line” has additional structure not depicted in
the sketch. The computed pattern is called Smale’s horseshoe in the book
of cartoons by Abraham and Shaw (pp. 95-96) [1] and is a special case
of Easton’s type-l trellises, as described by Rom-Kedar [18], with { = 1.
It is possible that type-l trellises with { > 1 would be observed at lower
Reynolds number. They are similar to the type-1 trellis but with a “delay”:
each F; lobe must form a tip in D;_;y4;.

The definition of the wake cavity as UOWQO'LU is not a unique one.
One may add a portion and remove another in our current definition. For
example starting at the point U and travelling along the unstable manifold
we could have switched to the other manifold at point B instead of at O.
However this cavity has the same mass and results in the same prescription
for the winding pattern. This is true for all other cavities for which the
unstable manifold leaves the cavity at the switch point. If on the other hand
the unstable manifold enters the cavity at the switch point (for example
at the point A), then the area of such cavities is greater by my and the
prescription of the winding pattern needs a shift in the lobe index. For
definiteness, we shall always employ the former type of cavity.

Consider again the numerical experiment for particle depletion. Suppose
that at period zero the cavity is filled with red fluid surrounded by clear
ambient fluid. We wish to know how much red fluid, r,, remains in the
cavity after n periods. An often used engineering model of transport in
many applications is that of the well-stirred reactor. If we assume that the
cavity is stirred to the extent that the number of particles in the detrained
lobe is the same as in any other region of the same mass in the cavity, then
rn must decrease by a factor

(25) f=1=-2my/mc,

in each period. This behavior is plotted as the straight lines in Figure 7.
For a complete description one needs to consider the detailed structure of
the manifolds. In particular, for the oscillating vortex pair, Rom-Kedar
et al.[19] showed that r, can be determined from the areas of intersection
between the iterates E; of the entrained lobe and the first shed lobe, D;.
To obtain a similar result for the present case, first note that if we know
how much net clear fluid, ¢; enters the cavity during period j, then

n
(26) T'n:mC""ch’
§=1
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where m¢c denotes the mass of the cavity. Next, determine ¢;. The amount
of clear fluid which enters during period j is simply 2mg. The amount
of clear fluid which leaves during period j consists of four types of fluid,
namely, clear fluid of the upper/lower stream being discharged into the
upper/lower street of vortices. Furthermore, each type of fluid is composed
of clear fluid with a range of ages, a. For example consider fluid of the
upper stream detrained into the upper row of vortices. Fluid that entered
during period j — a which leaves in period jis E,ND; (j—1<a < 1).
Summing over the ages and the four types gives
j-1
(27) ¢; = 2mp — »_ pu(Ea N D1)+ p(Eq N DY) + p(Ea N DY)+ p(E, N DY),
a=1

where p denotes the mass of its argument and a prime denotes the cor-
responding region in the lower half of the cavity. The symmetries of the
problem imply that the first two terms in (27) must be equal to each other
as must the last two. With Equations (26) and (27), decay curves can
be obtained by simply tracking particles in E,. Ultimately, however, one
would like to have a model which requires as little information about the
map as possible.

Figures 10-11 repeat Figures 8-9 for Re = 180. There are three main
differences with Re = 100.

(i) In Figure 10 the shaded area represents, once again, the fluid shed

Ficure 10. Close-up near the cylinder of four manifolds for Re = 180.
See the caption of Figure 8 for additional details.
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from the upper half cavity after one period. While its area is nearly identi-
cal to that for Re = 100, the area of the cavity is smaller. Hence, a larger
fraction (.50 versus .32) of the cavity is shed in each period, leading to a
faster initial decay rate of r,. Experimentalists have noted a correlation
between the size of recirculation zone of the time averaged flow and such
quantities as the residence time (e.g. Humphries and Vincent [10]) and
flame blow-off velocity (Zukoski and Marble [33]). Hence, it is of interest
to note that the reduced cavity size is also manifested as a reduced size of
the recirculation zone for the time averaged flow (see Figure 12), however,
the recirculation zones are larger than the cavities by 22% and 24% for
Re = 100 and Re = 180, respectively.

(i1) As shown in Figure 11, the winding pattern with respect to the other,
of the unstable manifold of U and the upper stable manifold of W has
changed. Each lobe E; must have, not only a tip in D; as before, but also
a six point intersections in D;_;, forming what is labelled as a “reversed
tip.” In following this rule notice how, after forming lobe D3, the unstable
manifold travels back and forth between the cavity and vortices in order
to form a tip in the previous lobe, D5, then winds out completely. So far,
this is identical to Re = 100, However, then the manifold winds in again
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to form a -
to form th
does not f
[18].

(ii1) The
the wake
manifold ¢
implies tra
fluid which
opposite si
upper stre:
one period
rate of tra
can be qu:
point M i
point 1¥.
boundary
is shown u

Re =10

Re =18

FIGURE 12. Streamfunction, averaged over one period, illustrating the
reduced size of the recirculation zone for Re = 180. Fifteen contour levels
are shown in the range [—.2,.2].
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to form a reversed tip in the nezt {0 previous lobe, D, before winding out
to form the next lobe, Dy; the process then repeats. This winding pattern
does not fall into the extended class of trellises considered by Rom-Kedar
[18].

(iii) There is more intertwining of the manifolds from the two sides of
the wake for Re = 180 than for Re = 100. For example, the unstable
manifold of U now also intersects the lower stable manifold of W. This
implies transport across the two halves of the cavity. A portion of fresh
fluid which enters the cavity from one side is discharged into vortices on the
opposite side. For example, Figure 11 shows how the fluid region from the
upper stream marked E_; is entrained into the cavity as E, and then after
one period is partly shed into both sides of the wake (see region E,). The
rate of transport of fluid across the upper and lower halves of the cavity
can be quantified by considering the stable manifold of the middle surface
point M in conjunction with the leftgoing unstable manifold of the wake
point V. They are shown in Figure 13 for Re = 100 and Re = 180. The
boundary of the two halves of the cavity may be defined as MO"W; it
is shown using “railroad tracks” for Re = 180. The shaded regions depict

Re = 180 T

FIGURE 13. The leftgoing unstable manifold of W and the stable manifold
of M are shown for two Reynolds numbers. They illustrate the degree of
fluid transport across the upper and lower halves of the cavity.

e ——
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successive iterates of fluid which is transported from the lower to the upper
cavity. For Re = 100, the splitting of the two manifolds is confined to near
the fixed points and a very small area of fluid (not shaded) is exchanged
across the two halves.

Manifolds, streak visualization and vorticily. In earlier work (Shariff et
al.[20}], [21]) it was found for leapfrogging vortex rings that smoke injected
across the entire diameter of the orifice by Yamada and Matsui [29] cor-
responded very well with the computed unstable manifold. The manifold
could not penetrate the core of the vortices in the inviscid confined vortic-
ity model which was employed, suggesting that had smoke been introduced
as a streakline at the lip of the orifice where the vorticity was emitted,
there would be little correspondence between manifold and smoke. Fortu-
nately, the method of smoke injection of Yamada and Matsui placed smoke
throughout the region of tangle of the manifolds where it gets drawn out
along the unstable manifold. Similarly, for the present study our experi-
ence has been that the boundary of a rectangular patch placed in the wake
cavity reveals more structure of the unstable manifold as time progresses.

However, in most experimental flow visualization for bluff bodies, tracer
is injected continuously at fixed locations in space. These locations may
be either on the surface of the body or upstream/downstream of the body.
In the first category is Taneda [23] who employs electrostatic precipitation
in water to generate a colloidal cloud on the entire surface of the body.
The photograph on the cover of Van Dyke’s [26] album was generated in
this fashion. Taneda refers to the resulting object as an “integrated streak-
sheet.” Gerrard [7] prepaints the surface with a strong solution of dye and
then allows it to dry. Perry et al.[16] inject a ribbon of dye through a small
porthole on the surface at 80° from the front stagnation point; by “ribbon”
we mean that a tracer band of finite thickness is introduced. In the second
category are Zdravkovich [32], who introduced a smoke ribbon at varying
y levels upstream of the body, and Cimbala ef al.[5] who employ a smoke
wire to introduce streak ribbons at several y-locations simultaneously.

Let us note that because a streakline must emanate from a fixed location
where the velocity cannot always be zero, while the manifold has no fixed
location other than where the velocity is always zero, that their definitions
never overlap. However, some streaklines can approximate the unstable
manifold very well. For example, Figure 14 compares an unstable manifold
with a simulated Taneda-Gerrard streaksheet. The streaksheet is drawn
out along the manifold and further downstream differences between the
two become imperceptible. Figure 15 compares a manifold with a streak-
ribbon injected at 90° from the front stagnation point. This attempts to
simulate the method of injection of Perry et al.[16]. One boundary of the
ribbon agrees well with the manifold with a slight difference in regions of
high curvature, while the other boundary has larger differences in regions
of high curvature. It should clear from the preceding plot that for smoke
wire injection far upstream of the cylinder, only the smoke released near
y = 0 would agree with the manifold because it passes close to the surface.
For injection further downstream, the largest y one could introduce tracer
and still observe attraction to the manifold would be determined by the
height of the Ej, (i < 0) lobes.

FIGURE 14
streaksheet
was obtaine
at every tin

FIGure 15
introduced
agrees well 1

We often
ticity. Ham:
in shear flo
of a streakl;
the streamw
present in m
necessarily i
reason for tl
pattern of st
degree the f



KINEMATICS IN A TIME-PERIODIC WAKE 637

Streaksheet

A

>~ Unstable manifold

FIGURE 14. TUnstable manifold of U compared with a Taneda-Gerrard
streaksheet near the surface of the cylinder (Re = 100). The streaksheet
was obtained by introducing particles all around the surface at » = 1.004
at every time step.

FIGURE 15. Unstable manifold of U compared with a streak-ribbon
introduced at 8 = 90° (Re = 100). The inner boundary of the ribbon

agrees well with the manifold.

We often rely on flow visualization to tell us something about the vor-
ticity. Hama [9] cautioned that there are two features of flow visualization
in shear flows which may lead to misinterpretation: (i) Lateral growth
of a streakline can occur even when the vorticity is spatially periodic in
the streamwise direction. Lateral streakline growth in the near wake is
present in many published photographs of flow past a cylinder—it does not
necessarily imply growth of any measure of hydrodynamic thickness. The
reason for the growth is given by appealing to the uniformly propagating
pattern of streamlines of the von Kdrman model which represents to some
degree the flow downstream of the body. A streakline injected in a region

rz—_—_—
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FIGURE 16. Manifolds compared with vorticity contours (Re = 100). The
manifolds shown are: the unstable manifolds of I/ and L and the stable
manifold of M.

of closed streamlines grows in lateral extent as each particle revolves on
the closed streamline on which it was placed. (ii) For the steadily propa-
gating model once again, centers of a streakline coil do not correspond to
vorticity peaks except for a streakline injected at the appropriate y-level.
Figure 16 compares vorticity contours with manifolds for Re = 100; the
unstable manifolds can be considered to be a good representation of streak-
lines injected close to the cylinder. Points of zero curvature of the unstable
manifold lie very close to vorticity peaks. There is lateral growth of the
manifold as one travels downstream, but for the present Reynolds numbers
it is matched by diffusion of vorticity.

Fluid in the vortex cores consists of only a small portion of fluid, in the
form of tongues, shed from the cavity; most of it consists of fluid which
acquired vorticity as it flowed over the body without being entrained into
the cavity. The periodic point ¥ has almost zero vorticity; this is true at
other phases also. Except near the surface of the cylinder, the boundary
of the two halves of the cavity also divides positive and negative vorticity
and one may wonder whether transport across the two halves of the cavity
for Re = 180 implies intrusion of vorticity of one sign into another. The
feature labelled as A in the vorticity contours of Figure 17 shows that it
does. It would be interesting to investigate the extent to which this process
contributes to the annihilation of shed vorticity.

Manifolds and sireich. In this sub-section we consider the stretching of
infinitesimal fluid elements as a means of rationalizing the close agreement
between flow visualization and the unstable manifolds. Knowledge of the
stretching of infinitesimal line elements is also important in problems such
as drop break-up (Tjahadi and Ottino [24]) and molecular mixing (see
Beige et al.[4] for a recent discussion relating stretch, molecular mixing
and manifolds).

We ask: which infinitesimal line elements originating in the near wake
stretch the most? Figure 18 shows the result after evolving a rectangular
lattice of particles for two periods. From the deformation gradient matrix
of each particle, the initial direction of the line element attached to it
which maximizes the stretch, together with the value of the maximized
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FIGURE 17. Vorticity contours for Re = 180. The feature ‘A’ indicates
that the shaded fluid region in Figure 13 transports negative vorticity into
the upper half of the cavity. Sixty levels are plotted in the range [-14.25,
12.2].

stretch, were determined. Only particles with maximized stretch above
the rather low threshold of 10% of the range above the minimum stretch
are shown; therefore the stretching is very localized. Elements are plotted
at their initial location with the initial maximizing direction indicated.
Elements which have left the computational domain are assigned the values
at the time of exit. One observes, with some exceptions, that line elements
initially near and normal to the stable manifolds of W stretch the most
(compare with Figure 8). With more periods, finer structure of the stable
manifolds is revealed. Beige et al.[4] discuss the relevance of points of
secondary intersection between the unstable and stable manifolds and we
verified that some of the points which have the largest stretch are such
points. If we plot particles at their current positions, as in Swanson and
Ottino [22], we find that elements which have the largest stretch after two
periods end up in the “braid” portions of the unstable manifolds between
vortices, but so do other elements which do not stretch very much. A better
way of determining which points in the current configuration have stretched
the most is to run a rectangular lattice of particles backward in time and ask
which line elements compress the most. Figure 19 shows the result for two
periods. Only line elements having stretch factors (minimized over initial
orientation) in the lowest 5% of the range are plotted. One concludes that
those particles in the current configuration which have stretched the most
are now near and parallel to the unstable manifold. Notice a reduction of
stretch where the streak ribbon in Figure 15 clumps.

Minchin’s [15] ezperiment. In §1 we mentioned the observation by Min-
chin [15] of the reversal of time-averaged temperature gradient downstream
of a circular cylinder. It suggests, if heat conduction effects are neglected,
that particles at some y-locations downstream must on average have origi-
nated upstream on the opposite side of the centerline. To test this, the code

f“—_——
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FIGURE 18. Initial positions and orientations of infinitesimal line ele-

ments which stretch the most after two periods (Re = 100). 100 x 100
elements were initialized on a rectangular lattice and only those having
stretch (maximized over initial orientations) above a certain threshold, dis-
cussed in the text, are shown. An attempt is made to show the stretch
factor of each element by gray-scaling.

was run backward in time and a vertical line of particles was introduced
at a downstream location at every time step for the duration of one pe-
riod. When particles crossed an upstream station, their y coordinates were
recorded. Figure 20 plots each vertical line of particles, using as abcissa
the time step at which it was introduced. Particles are colored by their y-
location upstream: pure white indicates a particle which is trapped in the
wake cavity and has not yet crossed the upstream station. One notices that
at certain instants all the fluid exiting from y € [—4, 4] originated from a
single side of the wake. This is what one would expect either from streakline
photographs by noting that a streakline is a flexible barrier that separates
fluid on the two sides of it, or from the smoke visualizations of Zdravkovich
[32]. 1t is more difficult to anticipate the behavior of 7, the upstream value
of y averaged for particles leaving downstream at y = 3/ during a period.
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F1GURE 19. Infinitesimal line elements currently on a rectangular lattice
(100 x 100) which have stretched the most in the last two periods. The
gray-scale bar is for the inverse of the stretch since, as explained in the
text, particles were run backward in time.
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FIGURE 20. Vertical lines of particles introduced for one period at the
downstream station z = 18 with time running backward. Each particle is
shaded according to its y value at the upstream station z = —2.
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FIGURE 21. Average of the upstream y-value of particles exiting down-
stream during a period (solid triangles); ———- , result if cylinder were
absent.

The computed result is shown as the symbols in Figure 21 for Re = 180;
trapped particles were not included in the average. The dashed line has a
slope of unity and is the analog of the temperature profile upstream. The
value of ¥ is practically uniform (in comparison with the dashed line) over
a width of two cylinder diameters and the analog of temperature gradient
reversal is present to a degree comparable to the sketch in Minchin [15].
For Re = 100, the region exhibiting uniform 7 and the reversal effect were
smaller. It is natural to want to make further inquiry about the extent to
which transport of fluid across the two halves of the cavity enhances the
reversal effect and the extent to which the von Kdrman model of steadily
translating vortices is also able to display it.

5. Recommendations.

At least for time-periodic flows, the unstable manifold appears to be
a good tool for numerical flow visualization. It would be interesting to
investigate whether manifolds defined for maps during some event in a non-
periodic flow also share this property in some way. It may be asked why one
is in need of a tool for numerical flow visualization in the first place—why
not simply use many particles to simulate the tracer injection technique of
the experiment? The answer is that it is difficult to place particles with
enough resolution everywhere tracer is injected. The unstable manifold is
an evolving curve for two-dimensions and the calculations suggest that it is
a type of attractor. This means that (i) The dimensionality of the problem
is reduced and it is easier to maintain resolution and (ii) A wide range of
initial conditions will tend to reveal its structure as time progresses. These
remarks must be tempered by the fact that to date the unstable manifold
has been investigated for time-periodic or quasi-periodic (Beige et al.[3])
flows.
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The last part of the previous section, attempted to explain an interesting
physical effect by means of a Lagrangian argument. We believe that many
phenomena governed by an equation of the form

(28) Ff = source term,

may receive insight by a study of the evolution of ¢ following fluid particles.
For example, Kurosaka et al.[12] look to a Lagrangian explanation of the
Eckert-Weise effect in which the wall temperature at the rear of a circular
cylinder in compressible flow is colder than even the free-stream static
temperature. The explanation uses the evolution equation of stagnation
temperature (in the absence of viscosity and conduction):

DI, P
(28a) B =
T + |ul?
b = —.
(29b) T, %,

Consider the pattern of streamlines of the von Karman model propagating
to the right at uniform speed U,. In the steady frame 7, is a constant, say
f(¥), on each streamline, by virtue of the fact that the right hand side of
(29a) vanishes. Therefore in the laboratory frame

2
(30) T = f) + oL + 2,
Cp Cp

where u; is the streamwise velocity in the moving frame. The last term
in (30) explains why on a clockwise streamline the stagnation temperature
is hotter on the top side than on the bottom and vice-versa for a coun-
terclockwise streamline. However it does not, in our opinion, explain why
the rear surface of the body is cold; this may require a truly Lagrangian
argument.

Open flows such as the one we considered in this paper display transiently
chaotic particle paths: a particle streaming towards the cylinder may be
entrained into the cavity and display irregular motion for a finite number of
periods before being shed into the wake. Many other systems also exhibit
transient chaos and it may be worthwhile to study them or to concoct
simple (even 1-D) maps which have the general behavior of the cylinder
flow. Similarities and differences with the cylinder may prove illuminating.
For example according to Grebogi, Ott and Yorke [34], the one-dimensional
quadratic map exhibits a transition from chaos to transient chaos above a
critical value of some parameter, whereby iterates gradually escape the
region z € [—2,2] and are swept to £ = —co; this is somewhat analogous
to the cylinder flow but the quadratic map is not one-to-one. The decay of
the number of “particles” from the region z € [—2, 2] is nearly exponential
(more so near the transition); this is unlike the cylinder flow. Furthermore,
the residence time is predicted well by invoking the assumption of the well-
stirred cavity. What are the essential reasons why the behavior of the
circular cylinder flow defies such simple laws?
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It is necessary for many applications involving wake flows to consider the
behavior of particles which have inertia, drag, added-mass, etc. and there
have been some attempts towards applying dynamical systems theory ideas
to this problem. Since the velocity components of each particle enter as
extra dimensions in the phase space a geometric approach similar to the
one adopted here would not be the first method of attack. Rather at first,
an investigation of the statistical properties of particle distributions seems
to be preferred. For example, for a model closed flow, Yu, Grebogi and
Ott [31] found that the system can exhibit behaviors typical of dissipa-
tive systems, for example, particles in physical space can concentrate on a
fractal set, and in a recent talk, Wen et al.[35] have characterized particle
distributions in wake flows in terms of the correlation dimension but a lot
more work needs to be done before transport rates or particle collection
rates at the surface can be predicted.
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